首页> 外文OA文献 >A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand
【2h】

A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand

机译:不确定需求下鲁棒时空装配线均衡的多目标模型及进化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Changes in demand when manufacturing different products require an optimization model that includes robustness in its definition and methods to deal with it. In this work we propose the r-TSALBP, a multiobjective model for assembly line balancing to search for the most robust line configurations when demand changes. The robust model definition considers a set of demand scenarios and presents temporal and spatial overloads of the stations in the assembly line of the products to be assembled. We present two multiobjective evolutionary algorithms to deal with one of the r-TSALBP variants. The first algorithm uses an additional objective to evaluate the robustness of the solutions. The second algorithm employs a novel adaptive method to evolve separate populations of robust and non-robust solutions during the search. Results show the improvements of using robustness information during the search and the outstanding behavior of the adaptive evolutionary algorithm for solving the problem. Finally, we analyze the managerial impacts of considering the r-TSALBP model for the different organization departments by exploiting the values of the robustness metrics.
机译:制造不同产品时需求的变化需要一种优化模型,该模型应包括其定义的稳健性和处理方法。在这项工作中,我们提出了r-TSALBP,这是一种用于流水线平衡的多目标模型,可以在需求变化时搜索最可靠的流水线配置。健壮的模型定义考虑了一组需求情景,并提出了要组装产品的组装线中工位的时间和空间过载。我们提出了两种多目标进化算法来处理r-TSALBP变体之一。第一种算法使用另一个目标来评估解决方案的鲁棒性。第二种算法采用新颖的自适应方法来在搜索过程中演化出健壮和非健壮解决方案的单独种群。结果表明,在搜索过程中使用鲁棒性信息的改进以及解决该问题的自适应进化算法的出色行为。最后,我们通过利用健壮性指标的值来分析考虑使用r-TSALBP模型对不同组织部门的管理影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号